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Steady State Computations for 
Wave Propagation Problems* 

By Bjorn Engquist and Bertil Gustafsson 

Abstract. The behavior of difference approximations of hyperbolic partial differential equa- 
tions as time t - oo is studied. The rate of convergence to steady state is analyzed 
theoretically and expe imentally for the advection equation and the linearized Euler equa- 
tions. The choice of difference formulas and boundary conditions strongly influences the rate 
of convergence in practical steady state calculations. In particular it is shown that upwind 
difference methods and characteristic boundary conditions have very attractive convergence 
properties. 

1. Introduction. For computing steady state solutions to problems in fluid mecha- 
nics, the time-dependent formulation is often used. There are several mechanisms 
that drive the solution to a steady state. In this paper we shall concentrate on the 
dissipation effect due to the boundary conditions, and not to the effect of friction 
and viscosity. Therefore we shall study hyperbolic partial differential equations 
where the boundary effects are dominant. The results are also valid for more general 
classes of differential equations of essentially hyperbolic character, as for example 
the Navier-Stokes equations for high Reynolds numbers. 

The purpose of this paper is to analyze the convergence properties to steady state 
both for the continuous problem and the corresponding discrete approximation. The 
basis for this study is the behavior of the spectrum of the differential and the 
difference operators, respectively. Two model problems are considered, the scalar 
advection problem and the isentropic Euler equation problem. The latter problem is 
studied in a two-dimensional geometry corresponding to channel flow. It is shown 
that the choice of boundary conditions radically affects the convergence rate to 
steady state as time increases. The asymptotic rate may actually change from 
exponential to algebraic, and for certain sets of boundary conditions there may be 
no convergence at all. 

The convergence rate for time-marching procedures has been discussed by others. 
For example, in [4] Giles investigated the eigenmodes of the solution of the 
one-dimensional Euler equations under various boundary conditions. Eriksson and 
Rizzi in [2] studied the convergence rate for a time-marching centered finite-volume 
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method applied to the two-dimensional Euler equations. They used an approximate 
eigensystem analysis of a linearization around a computed solution of an airfoil 
flow. 

In this paper we limit our investigation to approximations based on the true 
time-dependent system. Many methods use a modified form of the system, as for 
example in [14] where a scaling matrix multiplies the time-derivatives, or in calcula- 
tions using the common practice where different time-steps are used in different 
parts of the domain. 

An interesting result is that in many cases upwind differencing gives much faster 
convergence than centered differencing. This effect is not only due to the numerical 
dissipation. In fact, centered differencing with arbitrary large artificial dissipation 
added, does not give as good a convergence rate as upwind differencing. 

This is important, since upwind differencing is used by many methods, in 
particular those designed for shock computations; see, for example, the review by 
Turkel [13] and the references therein, e.g. [1], [5], [11], [12]. All these methods reduce 
to one and the same method for the model problems treated in this paper. 

In Section 2 we discuss how the differential operator and the boundary operators 
affect the convergence rate. The energy method and the Laplace transform are 
introduced. 

Section 3 contains a study of the scalar advection equation and the corresponding 
approximations. A family of difference schemes is shown to have solutions which 
converge at an exponential rate. The standard upwind differencing produces the 
fastest convergence. 

In Sections 4 and 5 the isentropic Euler equations are treated. Theoretical 
convergence estimates are given, and numerical experiments are presented. We also 
give a simple example showing that prescribing the characterstic quantities at the 
boundaries may actually produce a solution with faster convergence to steady state 
than prescribing boundary conditions which are equivalent to the pure initial value 
problem. Thus, in this case the simpler characteristic boundary conditions are more 
effective than higher-order radiation boundary conditions. 

2. The Differential Equations. In this paper we will treat two different model 
problems describing scalar advection and homentropic flow in two space dimen- 
sions. However, we shall first discuss convergence of the solution to a steady state in 
more general terms. 

Consider the following linear system of partial differential equations, 

(2.1a) at+ E AVTX- + Aou = F. x= (XI, ... Xd)EQ < t 

Here u and F are n-component vectors, AV,, v = 0, 1,... , d, are n X n matrices. 
This system requires initial- and boundary conditions 

(2.1b) u (X, ) =f (X), x E Q 

(2.1c) B(x, t)u(x, t) = g(x, t), x E , a 

where B is a rectangular matrix. 
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We are interested in problems (2.1) where the solutions converge uniquely to a 
steady state when t -- oo. A necessary condition for convergence is that for problem 
(2.1) with F = 0, g = 0 the solution for any initial values converges to zero as 
t --- 0 . 

There are essentially two phenomena causing the energy decay required for 
reaching a steady state. 

(A) Internal decay mechanism created by variable coefficients A, = A,(x, t) and 
the presence of lower-order terms AO, This is to be distinguished from the dissipa- 
tion mechanism in parabolic problems, where the decay rate depends on the 
frequency content of the solution. The decay rate for our type of hyperbolic problem 
is exponential. 

Let Q be the unit cube, and assume periodic boundary conditions and symmetric 
matrices A ,, v = 1, . . ., d. The scalar product and the norm are defined by 

(u, v) =u*vdx, 1ull2= (u, u). 

Integration by parts gives 

d |JuJI2=--2Re(u,Du), D = AO-2 d 
dt 2 ~~~~~~V=1 ax> 

which implies that the decay rate is determined by D. We get 

ed*tI|u(_, 
0) || I<u(, t) || ed*tllu( ,0) ||, 

where the constants d*, d * satisfy 

2d*I < D + D* < 2d*I. 

(Of course, we need d* > 0.) 
(B) Boundary decay mechanism, which is determined by the boundary matrix B 

together with the matrices A.. When the integration by parts technique used above is 
applied to the nonperiodic case, boundary terms will remain. Let 

d 

A = n.A., 
v=1 

for x E 8 2, where n = (n ,..., nd) is the exterior normal to the boundary 8 2 of U. 
Then the extra boundary terms are given by the boundary integral f0 u *Au dS, and 
there are two possibilities: 

(1) u*Au is positive for some vectors u satisfying the boundary conditions. In this 
case the energy method fails to show even well-posedness of the problem. 

(2) u *Au is nonpositive for all vectors u satisfying the boundary conditions. This 
is sufficient for well-posedness of the problem. However, not even the stronger 
condition 

u*Au < -au*u, a > O0 

is sufficient for proving convergence to steady state as t -> 0o, since the boundary 
terms may vanish even if the solution in the interior has not reached a steady state. 
Such an example is given below. 
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Example 2.1. 

au_ au xau= l ,-1<~ 1, 0 at ax ay 
Boundary conditions: 

u=Ofor: x=1, O<y<1, 
y =, -1 < x < O, 

x =-1, -1 <y < O, 
y= -1, O<x< 1. 

The solution is given by a rotation around the origin, and thus there is no 
convergence to steady state in general. 

We saw above that it is important for convergence to steady state that energy in 
the solution is transported to the boundary, such that the boundary conditions can 
cause the norm I u(, t) to decay. This problem has been studied extensively in the 
following form: Is there a decay law 

11 U(- t) IIQ < f (t), 

where f(t) -> 0 as t -x oo and 2' is a subset of 2? Very often, 2 is an exterior 
domain and 2' is bounded. Different conditions on the domain and the differential 
operator are derived in order to guarantee that the energy is not trapped in 2' and 
that there exists a decay law. See, e.g., [7], [8], [9]. 

We shall use the Laplace transform technique for obtaining estimates of the decay 
rate of the solution to the homogeneous problem. This technique is also used by 
Kreiss to prove well-posedness [6]. Let u(x, s) = 9u(x, t) be the Laplace transform 
of u, where Y is defined by 

U(x, s) e-8su(x, t) dt. 

The inverse Laplace operator 2'-1 is formally given by 

u(x, t) = 2/''(x, s) ij e sU(x, s) ds. 

We also need Parseval's relation 

(2.2) f e2atU(X, t) dt= 2jTf fi(x, -a + i/3) 2d/3, 
0 -00 

where the integrals are assumed to exist. We shall consider x-variable coefficients 
AV= Av(x), B = B(x) for the homogeneous problem with F = 0, g = 0. The 
Laplace-transformed problem (2.1), for which we assume an existing classical 
solution with uniformly bounded derivatives, is 

(2.3a) sU + P& = f, x E Q2 

(2.3b) B& = O, x E aqu 

where 

Py 2Avaa +AO. 
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The method for estimating the decay rate is based on the spectral properties of P. 
Assume that the problem (2.1) is well posed such that 

(2.4) f e2aotllu( ,t) II dt < 0o for someconstant ao. 

Then by Parseval's relation (2.2) the integral 

f ii(xa+?i13) 1d2 

is also finite. We have the following result: 
If the spectrum of the differential operator P is disjoint from the strip -a, < Re s 

< a0, a1 > 0, such that for the solution to (2.3), -'u' is well defined in that strip, 
then u decreases exponentially, i.e., for any constant a, a > a1, 

(2.5) 11 u( ., t) 11 < ce atIlf f( .) 11 . 

The proposition follows from the fact that 

f i(x,-a, + i/)I df: 
-00 

is finite, and by applying Parseval's relation (2.2) with a = a,. From the assumption 
of bounded time-derivatives, (2.5) follows immediately. 

We have so far considered linear problems only. The analysis is in many cases 
relevant also for the computation of solutions to nonlinear problems in the im- 
portant case where the solution is close to steady state and linearization is justifiable. 
If the solution contains shocks, there is, however, an extra source of energy decay 
that should be analyzed separately. We shall not deal with the special features of 
shocks in this paper. 

3. The Advection Equation. We shall first use the advection equation as the 
simplest possible model equation which describes phenomena like pure transport of 
supersonic flow in more general hyperbolic problems. The corresponding differential 
equations have the property that their solutions in the typical case of a finite domain 
converge to a steady state after a finite time. 

Model Problem I. The advection equation 

(a) au/at+au/ax= 0, 0 <x I,~0t, 

(3.1) (b) u(O, t) = 0, 

(c) U(X,0)=f(x). 

The solution to this problem is given by 

u(x, t) f(x -t), x > 

The steady state u 0 is reached at t= 1. When analyzing the corresponding 
difference approximation we shall use the Laplace transformation technique out- 
lined in Section 2. Let us apply the same technique to the continuous problem (3.1). 

The transformed problem is 

(3.2) (a) s? + au/ax =f, 0 < x 1, 
(3.2) (b) U(0 s)= 0, 
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which has the solution 

u(x, s) = f ` es(xO)f (() dt. 

Since (3.1) is well posed, we have 

00 ~ ~ ~ '~ X 2 

(3.3) 1 | l(x, ao + i/3) I d/ j ] e(ao f)(x f( ) d dl < oo. 

But 

00 X ~~~~~~~~~~~~~2 
I = f 

| e-(ao+a,)xf ee-(-ala+if)(X-O)f() d2 d:, 
-000 

where f( )=e( )ff( ). 

Since the problem is well posed for all initial functions f(x), I is finite, and we 
can get any decay rate according to the result in Section 2. We have actually shown 
that the differential operator a/ax does not have any spectrum. 

Consider next the semidiscrete approximation of (3.1), 

(a) auj/at+Qu.=0, j=1,2,...,N-1,0<t, 

(b) u0(t) = 0, 

(c) BrUN(t) = 0, 

(d) uj(0) =fj, j = 0,1...IN, 

where u1(t) approximates u(xj, t), xj = jAx. The operator Q is the general con- 
sistent 3-point difference operator parametrized in the form 

Q = - 2AxD?D 

The standard notation for difference operators is used, i.e., 

DOu1= 22X (uj+1-U1-1), D+Uj= ?- (u}?l - U1)- 

Br is the r th order extrapolation operator, i.e., 

Bruj = (I-E -, ) rUj, E -1uj = u_1. 

Our purpose is now to investigate the rate of convergence to steady state. 
The spectral properties of the operator Q coupled to the boundary conditions 

(3.4b) and (3.4c) implies the following result. 

THEOREM 3.1. For any c > 0 the solution of (3.4) decays exponentially in time if Ax 
is small enough. 

Proof. We Laplace-transform the differential-difference equation (3.4) and con- 
sider the homogeneous problem 

(a) SA + QJ = O, j = 1,2, ..., N-1, 

(3.5) (b) ui0 = 0, 

(C) BrUN 
= 0, 



STEADY STATE COMPUTATIONS FOR WAVE PROPAGATION PROBLEMS 45 

where the first equation is 

SUi + A -1 -1 2x 2i + fij1) = o. 

We want to show that there is no nontrivial solution for Re s > 0. Consider first the 
case c = 1. The equation (3.5a) is then 

Su + , (,Uj- = 0, 

with the general solution Uj = aKj; where K is given by 

SK + ,\ (K - 1) = 0. 

The boundary condition (3.5b) shows that there is only the trivial solution u= 0. 
For c # 1 the solution of (3.5a) is of the form 

U1 = aKj + P3Ki, 

where K1 # K2 are the solutions of the equation 

(3.6) SK + 2i' (K 2 1)-2 (K - 1)2 = 0. 

For simplicity we rescale s such that s s/2t\x. (3.6) can then be written 

K2 +s + 2C 
I__ 

+ C 
(3.7) 1-c 1-c=0 I - C 1-C 

which has the solutions 

s +2c (s 2c2? 1?+C 

Kl 2=2(1 - c) 2(1 -c)) 1 - c 

The K-roots of (3.7) coincide if 

(s + 2c)2 + 4(1 -_c2) = 0, 

which is only possible for s = + 2i and c = 0 when Re s > 0 and c > 0. This case is 
analyzed later. 

Consider Re s > 0, c > 0 and c 0 1. The semidiscrete approximation (3.4) is 
dissipative, which implies 

Res < O forK=-e'o, w real, W c O. ? 27r, ? 4 T, .... 

where s is given by (3.7). Hence, there is no solution K of (3.7) with IKI = 1 when 
Re s > 0. 

Fors = M> 0 M - +oo,weget1 -*0, K2 -* +oo and thus, due to continu- 
ity of the roots, IKIJ < 1 for all Re s > 0. Since K1K2 = -(1 + c)/(1 - c) we get 

IK2J1 >1+ 
c 

The general solution is inserted into the boundary conditions, and a linear system of 
equations is obtained for a, /P. A nontrivial solution exists only if the determinant 
vanishes, i.e., 

1 1 1 2 
(3.8) det| N-r(, - 1)jr K{Njr(K - 1)r=0 
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or, equivalently, 

(K 2 )N r ( ) 

No nontrivial solution is possible for any fixed r and c if N is large enough (Ax 
small enough) and 

r 

K1 - 1 | - 1 | bounded, since 

K2 +O, -*Io 

IK1I I1 - CI 
When c > 0, the above relations are valid also for Re s = 0. 

Consider finally c = 0 and Re s > 0. The continuity of the spectrum implies that 
only Re s = 0 needs to be studied. The equation (3.7) becomes 

(3.9) K2 + SK - 1 = 0. s = 2i, co real, 

and the roots are K12 = -i& + 1 - . 

For X 0 + 1 the determinant condition (3.8) is necessary for the existence of a 
nontrivial solution. 

For 1X1 < 1 both roots KI, K2 are on the unit circle. 
Equation (3.8) gives 

l-iw + /1- 2-1I 1 

which is not possible. 
For X = + 1 the equation (3.9) has double roots K = -i and K = i corresponding 

to the eigenvalues s = -2i and s = 2i. The general solution of the homogeneous 
problem (3.5a) is 

Uiy= (af + pj)(?i)j. 

The boundary condition &o = 0 implies a = 0, and we also have 13 = 0 since 

(I -E E) rj(+?i)j * 0. 

In the final case X > 1, the roots K1 and K2 are both purely imaginary, 

K12 =i(-O + VW -1). 

The relations IK11 < 1K21, JKI1 
- < IK2- 11 contradict (3.8) and there is no nontriv- 

ial solution. 
This proves that the system (3.4) only has exponentially decaying solutions. 
The whole spectrum of Q was computed using a standard eigenvalue routine for 

the case c = 0, i.e., Q = Do, The linear extrapolation procedure was used as 
boundary condition at x = 1. Figure 3.1 shows clearly how one end of the spectrum 
(for -Q) approaches the imaginary axis as Ax gets smaller. Actually, one can show 
that the distance between the imaginary axis and the right end of the spectrum is 
proportional to (/x)2, indicating a very poor convergence rate for steady state 

calculations using centered nondissipative difference operators. As a constrast, the 
upwind difference operator -D- obtained for c = 1 has the only eigenvalue -1/Ax 
(but with multiplicity N). 
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Ims 

20 

7zr-- AX = 0.05 

10 

__ {Res 
-5 

FIGURE 3.1 

Spectrum of -Do with linear extrapolation at the boundary. 
(Upper half of the spectrum displayed.) 

As we have seen, the introduction of boundary conditions has a dissipative effect 
on the nondissipative operator -Do, For comparison we shall show what effect the 
introduction of the dissipative term cAxD?D-j2 has in the periodic case. The 
eigenvalues for -Q are, in the periodic case, 

s = Id (-i sin 2 7rwAx -2c sin 2,rAX), X = O. 1, ..., IN - 1. 

Figure 3.2 shows the periodic case for c = 0 and c = 0.2, and the boundary 
condition case for -Do (shown also in Figure 3.1). In all cases the step-length is 
Ax = 0.1. 

The general convergence rate is governed by the eigenvalue s with the largest real 
part. In Figure 3.3, Re s is presented as a function of c, and a very sharp peak is 
obtained at c = 1 corresponding to the upwind operator D -. 

The use of second-order accurate upwind differencing requires an extra numerical 
inflow boundary condition for nonperiodic problems. If that condition is given by 
first-order upwind differencing, s is again equal to -1/Ax. However, contrary to the 
previous case, this eigenvalue is simple. 



48 BJORN ENGQUIST AND BERTIL GUSTAFSSON 

Ims 
IMS~~~~~~~~~~~ 

10 

Res 

FIGURE 3.2 

Spectrum of -Do + cAxD+Dj12 with periodic boundary con- 
ditions. I: c = 0, II: c = 0.2, and III: spectrum of -Do with 
linear extrapolation at the boundary. Ax = 0.1. (Upper half of 
the spectrum displayed.) 

Res 

1 2 
C 

-5 

FIGURE 3.3 

Largest real part (Res') of the eigenvalues to -Do + 
cAxD+Dj/2 as a function of c. Linear extrapolation at the 
boundary for c A 1 (u 0= O. UN = 2uN- - UN-2)- Ax = 0.2. 

4. The Euler Equations. In this section we shall consider inviscid isentropic flow in 
a channel. The Euler equations are 

3w I 3w a3w 
(4.1) + A(w) a + B(w) a = ? 
where 

U P ~~~V 0 P 
w= (- ) A(w)= (c2/p U 0J B(w)= 0 v 0 

v 0 0 u, c2/p 0 v 

u and v are the velocities in the x- and y-directions, respectively. 
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SOLID Y. 
WALL v 

y=1 

SYMMETRY- 
AXIS .1.. . . ._ X 

y=O x=o x=1 

FIGURE 4.1 

Computational domain for the Euler equations. 

It has been assumed that the pressure p and the density p are related by an 
algebraic relation p = p( p). The local speed of sound c is defined by 

c = dp/dp. 
The equations (4.1) are defined on a domain corresponding to a channel with 
infinite extension in the x-direction according to Figure 4.1. 

The system (4.1) is linearized around some constant state w- and the variables are 
made dimensionless. The normalizing velocity is the x-component u, so that the 
diagonal of A becomes the unit matrix. Since the y-component v is zero at both 
horizontal boundaries, it is assumed that v- = 0 in the constant state which we are 
linearizing around. In order to get symmetric coefficient matrices A, B, the velocity 
components are scaled by the factor p-/c. For convenience, the original notation 
w = (p, u, v)T is kept also for the new variables, and we get the linearized Euler 
equations with constant coefficients 

(4.2) - + A - + =0, 0 < x, y < 1,0 < t, at a~x ay 

where 

l~~i /1 c 0 0O O 
W u , A- c I B= 0 0 

v 0 0 1 c 0 0 

The supersonic case is defined by the condition c < 1. In that case the boundary 
conditions are 

( y, t) = g'(y, t), 

(4.3) 
) U(0, Y, t) = g"(y, t), 

v(0 y, t) = g"'(y, t), 

v(x, 1, t) 0. 

At the symmetry axis y = 0 the conditions are 

(ap(x , t)/ay = o, 

(4.4) ( au(x, 0, t)/3y = O0 

(v(x0, t) = 0. 

As in the scalar advection case, the solutions decay. 
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THEOREM 4.1. The solutions to the supersonic problem (4.2) with homogeneous 
boundary conditions (4.3), (4.4) vanish for t > 1/(1 - c). 

Proof. Introduce the new vector v by 

W~ = e (t -,x)W c a > O. ,B > 0. 

The equation (4.2) then becomes 

? A \- + B a. + A - + B aY + a(,A -I)wv = O. 
at ax 

and we get for c < 1, 

Ild I ~12 K3 \ a'\/a '~ 
2 dt wl1 a t ) (v, Aax ) V ( ay a (~v ,(PA I) iv 

= ifl1 (p(1,yt)2 + iu(1,yt)2 + 2cA (1,yt)ii(1,y,t) + i(1,y,t)2)dy 

- ( x~,( PA - I )w) < 0 if PA ~> I. 

(A is positive definite. The norm is defined by flw112 = (w,w) = f" fo wTwdxdy.) 
Hence, 

I|w(-, -,t)I= eat[f A e2a xv(x y t)2dxdyI 

e-at+a"11 'w(, . 0) 11 < e-a(t-j8)jjw W(. * 0 ) 11. 
The constant /B can be chosen equal to 1/(1 - c), and since a is arbitrary, the 
solution must vanish for t > 1/(1 - c). 

We next turn to the subsonic case c > 1. Two boundary conditions must be given 
at x = 0 and one condition at x = 1. We first consider specification of the Riemann 
invariants, which in the linear case corresponds to a specification of the characteris- 
tic variables: 

(p(O, y, t) + u(O, y, t) = g'(y, t), 

(4|5) v(O y, t) = g"(y, t), 

p(1, y, t) - u(1, y, t) g"(y, t), 

v(x, 1, t) = 0. 
It is easily shown by the energy method that these conditions give rise to a 
well-posed problem. In order to estimate the convergence rate to steady state, we 
want to compute the spectrum of the differential operator in space. To make that 
computation easier, we first apply the Fourier transform used in [2] for the same 
problem, i.e., we use the expansions 

00 

p(x,y,t)= E Ukj(x,t)cos VCy, 

W =o 
00 

u(x, y, t) = E u< (x, t)cosi 7oy, 

=ol 
W=1 
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The introduction of these expansions into (4.1) gives for each c 

aW, 
+ A + Tv&BWi = 0, 

at 

where 

0 Oc 
w= () , B=0 001. 

VW, -c 0 0 

The spectrum is given by the set of s-values which satisfy 

a~ A- + ' "r=B (4.6) sw + Axa + vwBw 

for nontrivial vectors w which fulfill the homogeneous boundary conditions. The 
general solution to (4.6) can be written in the form 

O (S + K2 S + K3 
(4.7) w = a T1 s'c eKl +'2 -CK2 eK2 + a3 -CK3 eK3x. 

Cs 7TWC 7 CI 

Here the coefficients al, a2, a3 are to be determined by the boundary conditions, the 
exponential coefficients Ki, K2, K3 are the distinct roots of the characteristic equation 

S + K CK 7TWC 

(4.8) det CK S + K 0 0. 

-7TCOC 0 S + K 

(For multiple roots 
Kj, 

the general solution (4.7) has a different form if the 
coefficient vectors are linearly dependent.) 

The roots of (4.8) are given by 

KI = -S~ 

(4.9) I_____CC) CS K K2,3 Z2 I [S + V(C2 )(Toc) + C s j. 

The general solution (4.7) is inserted into the boundary conditions 

fp + u = v = 0 for x = 0, 

'p -fu=0 forx = 1, 

giving 

.ocai + [S - K2(C 1)] 2 + [S - K3(C - 1)] a3 = 0, 

sar + 
7fU2 + 7TCU3 = 0 

(v +ceK a [ + [S + K2(C+ 1)] e K22 + [S + K3(C + 1)] eK3a3 0, 

which has a nontrivial solution al, a2, a3 if and only if 

S{ [S - K3(C - 1)][S + K2(C + 1)] e 2 

(4.10) -[s I- K2(C - 1)][s + K3(C + 1)]eK3} 

+ (40 oC { [S + K3(C + 1)] eK3 -[s + K2(C + 1)] eK2 

- eK1 (K3 - K2)(C - 1)} = 0. 
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There are four points in the s-plane where the general form (4.7) is not valid: 

c2+ 1 
S = 7rW, Ki 

= K2 = -7TCO, K3 = 27T 

c2 + 1 
S = K-7 , = K3 = T@, K 2= -7TC 2 

S iC K, = -7T(i/C- K2 K 
- 1 212* 2 _ _ _ _ _ 

S-7T ~l C, K1 = TlC 1' K2 K3 
C 

2 

At these points the general solution consists of two exponentials, where one is 
multiplied by a polynomial in x of degree one with vector coefficients. It can be 
shown that none of these exceptional points belongs to the spectrum. 

(4.10) is a scalar equation in the complex variable s. It was solved by Newton's 
method using different initial values such that all solutions within a certain domain 
around the origin were obtained. The result is shown in Figure 4.2 for c = 2, X, = 1, 
and X = 4. The whole spectrum is for each X contained in the left half-plane. 

Ims 

co= :1 +- 40 
- c ------O w=4 

-20 

- Res 
-10 

FIGURE 4.2 

Spectrum for the Euler subsonic differential operator with 
characteristic boundary conditions. (Upper half of the spectrum 
displayed.) 
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However, there is always one eigenvalue close to the imaginary axis, in fact, when WI 
increases, the distance goes to zero as 1/l&I . 

We have also considered a different set of boundary conditions which may be 
more natural for those who have to provide the data. Instead of (4.5) we use 

(U(0, y, t) = g'(y, t), 

(4.11) ) v(0, y,t) =g (y t), 
p(l, y t) = g"'(y, t), 

(v(x,1,t) 0. 

In [10] it was shown that these conditions give a well-posed problem. The spectrum 
was computed in the same way as above. The final equation corresponding to (4.10) 
is 

(4.12) (7T22 + sK2)(s + K3)e K3 -(72W2 + SK3)(S + K2)e"2 = 0, 

where K2, K3 are given by (4.9) as before. In this case the spectrum is purely 
imaginary. This reflects the fact that the L2-energy of the system is conserved. Part 
of the spectrum is shown in Figure 5.3 (co = 1) where the spectrum of the discrete 
operator is also given. 

In this section we have seen that the decay rate and thus the convergence rate as 
t -* oo may vary drastically depending on the flow field and the boundary condi- 
tions. For supersonic flow, the solutions vanish after finite time. For subsonic flow 
with boundary conditions (4.11), the energy does not decay at all, and with 
boundary conditions (4.5) the decay is slower than any exponential and depends on 
the smoothness of the solution. The higher frequencies (large c) decay at a slower 
rate than the lower frequencies (small o). 

The case where the matrices A and B are linearized around zero velocities 
corresponds to the wave equation and has been studied extensively; see, e.g., [9]. The 
equations are 

Pt + cu + cw = 0, 
U t + CP' ?, 

t Ut + cpy a0. 

From this system there follows the scalar wave equation 

= c2(p~ + p~) Ptt = X c x yy)- 

In [71 and [81 it is proved, for example, that the energy in a bounded domain decays 
like t -2 if the wave equation is solved in the exterior of a star-shaped domain for the 
Neumann and Dirichlet problems. 

The boundary conditions (4.5) correspond to giving some of the characteristic 
quantities at the inflow and outflow boundaries. One may speculate in the possibility 
of choosing artificial boundary conditions that produce solutions which more 
accurately simulate flows in open channels. The hope would be for an improvement 
in the decay rate. We shall give a simple example showing that the exact open 
boundary condition, which is equivalent to the corresponding Cauchy problem, may 
actually be worse than giving the characteristic quantities. Consider the differential 
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equations 

au au 
_+ -+ U= 0, 

at ax (4.13) 0 <' x < 1, t > 0. 

at- ax-a=o 
with initial conditions 

u (x, ) f (x), 0 < x < 1, 
u (x, 0) =f(x), 

and characteristic boundary condition 

u(O, t) = 0, v(1, t) = 0. 

The solution 

u(x, t) = e-tf(x - t), x - t > O. 

u(x, t) = O. x -t < O. 

v(x, t) = t u(x + t - T, T) dT 

vanishes after t = 2. 
With open boundary conditions to the right, the differential equation is valid in 

the domain x > 0, t > 0 with the initial values f(x) g(x) 0 for x >? 1. The 
boundary condition is u(O, t) = 0, and the solution is given by 

u(x, t) = e-tf(x- t), v(x, t) = f u(x + t - T, T) dT. 

In the interval 0 < x < 1 the solution decays exponentially with time, and hence 
slower than for the corresponding problem with characteristic boundary conditions. 

5. Difference Approximations to the Euler Equations. In this section we shall study 
upwind difference methods for the Euler equations with constant coefficients as 
given in Section 4. The upwind differencing technique, in the scalar one-dimensional 
case, is based on the idea of using information only from that side which contains 
the data required for generating the solution in the continuous case. This technique 
is easily generalized to systems and to several space dimensions. We simply treat 
each term one-dimensionally, and separate the left- and the right-going characteristic 
variables. 

Let S and T be the matrices that diagonalize A and B in (4.2), respectively, i.e., 

STAS 0 1-c 2 ) TTBT=0 ? ? 
0 0 1 0 0 -c 

The one-dimensional problem 

au au - + A = 0 
at ax 

is equivalent to 

av+ STAS 0= V= STU, 
at ~ax 
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which is a set of three scalar equations. With the projection operators P+, P_ 
defined corresponding to the sign of the eigenvalues, i.e., for c > 1, 

1 0 0 00 
P+= 0 001 P_= 0 10, 

o 0 1 o o 
corresponding to the subsonic case, the first-order upwind scheme is 

Ia v. aV 
P+ a + P?STAS(DV) =0 P- + PSTAS(D+Vj) = 0. 

To regain the original variables, we add the two equations together and multiply by 
S, which gives 

(5.1) at' +?A+(D U) A(D+Uj) = 0, 

whereA +SP +STA, A SPSTA. 
The y-direction is treated analogously, and we obtain the upwind scheme for (4.2) 

of first order, 
au. a 
U'+ QUJ = O, Q = A D_ + A-D + BD_Y + BD+, 

where the difference operators have been given proper subscripts to indicate the 
direction of differencing. Since in our case the flow is always subsonic in the 
y-direction, the coefficient matrices B+, B_ are 

B+= 2 0X 0 , B = 2 C 0 

As in the continuous case, we shall use the special Fourier transform in order to 
simplify the spectral analysis. At any given time it is assumed that the solution has 
the form 

M 

PJk = E ( pi (O)COS rCyk, 
W=O 

M 

Ujk = 1 Ui( ))CosnOSYk 
o=1 

M 

VJ= k VJ((h)sin7Tvyk, k = 0,l,...,M, M= I/ y. 

An easy calculation shows that with -q = 7Tw\y we get the transformed system 

a J(co) + Q = O. 

where Q = A+Dx + A D+x + B, 
I - Cosa 0 sina 

B y 0 ~0 0 
Yt -sina 0 1-cosa . 

The Supersonic Case c < 1. If the original flow is supersonic in the x-direction, we 
have c < 1, A + = A A _ = 0, i.e., Q = AD_ X + B. The approximation is a differen- 
tial in time-difference in space equation 

a 
^ 

u(W) +( 

I 
A + B^ U^J(w /\A U -Jc) = O. a t Ui (1 1 
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All boundary conditions are given at x = 0, and in order to find the spectrum, we 
set U0(w) = 0. Obviously, the eigenvalues of Q are given by 

det ( A + sI) = O. 

The three eigenvalues given by this equation were computed numerically for 
Ax = Ay, c = 1/2, 0 < i7 < 2X. The maximal real part of s is shown in Figure 5.1, 
and it is seen that the matrix B actually forces the spectrum even further to the left 
compared to the one-dimensional case. 

Since the use of upwind difference operators introduces dissipation, one may 
think that a change to centered differences in the y-direction should give a spectrum 
located further to the right. But this is true only for certain values of al as shown in 
Figure 5.1. 

Max(Res) 7r/2 7 7r/2 27r 

-10 

*-- x UPWIND DIFFERENCING IN Y 

o-o CENTERED DIFFERENCING IN Y 

FIGURE 5.1 

Largest real part (Res) of the eigenvalues s of the upwind 
Fourier-transformed difference approximation to the supersonic 
Euler differential operator is shown as a function of a- = aric y, 
where X is the dual variable to y. Ax = Ay = 0.1. The speed of 
sound c = 0.5. 

The Subsonic Case c > 1. For subsonic flow in the x-direction, we have c > 1, and 
the coefficient matrices A +, A - are 

I I 1?c C c\ 
A 1 +c 1+c A 1-c c- 

0 0 2 0 0 0 
Two boundary conditions must be given at x = 0, and one condition at x = 1. We 
shall consider the two different sets of boundary conditions given in Section 4, and 
begin with the characteristic variables specified, i.e., (4.5). 
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After Fourier transformation with respect to y, we obtain the differential-dif- 
ference equations 

(auj( )/at + QbJ(c) = O = 1,..., N - 1, 

Q=A+D_ x +AD+X + 

(5.2) GPo() + &0(w) = 0, 

Vo(1 ) = 0, 

PN(W) - UN(W) = 0. 

It should be noted that the three boundary conditions given are sufficient to define 

Uj(w) at all inner points. When applying the scheme at j= 1, only the combina- 
tions p + ui and v occur at j = 0, and similarly only the combination p - u occurs 
at j = N when the scheme is applied at j = N - 1. In order to obtain also the 
boundary values for all three variables, three extra boundary conditions must be 
defined, one at j = 0 and two at j = N. Even if these conditions do not affect the 
inner solution, we state them here since they have been used also in combination 
with other methods. At j = 0, the second equation of (5.1) is subtracted from the 
first to obtain a formula which does not include the point j = -1. Similarly, at 
j = N, the two first equations of (5.1) are added (to avoid the point j = N + 1), and 
the equations for v (the third component of U) can be used as they stand. We 
collect all the boundary conditions for the untransformed system: 

Left boundary 

Pok + UOk =gk, 

|VOk = gk 

(5.3a) a (Pok - UOk) +(1 - c)D+x(Pok - UOk) 

+ -D-y(pOk + V0k) - -D+Y(Pok - VOk) 0; 

Right boundary 

PNk - 
UNk gk 

a (PNk + UNk) +(1 + c)DX( PNk + UNk) 

(5.3b) + 2 D-Y(PNk + VNk) 
- D+Y(PNk- VNk) = 0, 

atVNk + DXVNk + 2DY(PNk + VNk) + cD+Y(pNk - VNk) 0- 

The spectrum for the operator -Q with the boundary conditions given in (5.2) were 
computed numerically, and the result is shown in Figure 5.2 for W = 1. 

The spectrum for the continuous operator is "bent down" towards the negative 
real axis when the differential operator is discretized; the picture is similar also for 
all the higher frequencies w. The consequence of this feature is that the use of 
upwind-differencing accelerates the convergence to steady state. We note, in particu- 
lar, that the approximation of the lower part of the spectrum approaches the true 
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-0--a- CONTINUOUS CASE 
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0 AX=0.067 
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I ------0Res 
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FIGURE 5.2 

Spectrum of the upwind Fourier-transformed difference ap- 
proximation to the subsonic Euler differential operator with 
characteristic boundary conditions. w = 1. For the discrete 
cases, Ax = Ay. The dotted lines indicate the path of conver- 
gence as the step size decreases. (The upper half of the spectrum 
is displayed completely only for Ax = 0.2 and Ax = 0.067.) 

values from the left, which is marked by dotted lines in the figure. (These eigenvalues 
have the smoothest eigenvectors, and they are therefore better approximated than 
the others when a coarse mesh is used for the difference operator.) 

In practice, one often wants to avoid specifications of the particular combinations 
of variables corresponding to the characteristic variables at the boundaries. We have 
therefore investigated the case where the velocity and the density is specified 
according to (4.11). In Section 4 it was mentioned that the spectrum for the 
continuous operator is purely imaginary, which means that the solutions to the 
time-dependent problem do, in general, not converge at all. However, as shown in 
Figure 5.3, the spectrum for the upwind difference scheme is located in the left 
half-plane. This means that for every fixed grid the approximation will converge to a 
steady state which approximates the unique solution to the steady state continuous 
problem. One can observe from calculations with different number of mesh points N 
that the largest real part of the spectrum to the discrete operator is well separated 
from zero, independent of N, for the highest frequency X = N. For N = X = 5 we 
have the spectrum of the continuous operator in the set { s, lIm(s) I > 26, Re(s) = 0} 
and the spectrum of the discrete operator in {s, 1Im(s)I < 1, Re(s) < -2}. 

The spectral analysis above is based on the Fourier transform in the y-direction. It 
gives a relevant result regarding the asymptotic convergence rate in time. In order to 
study the convergence in real space explicitly, the original system of equations was 
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Ims 
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FIGURE 5.3 

Spectrum of the upwind Fourier-transformed difference ap- 
proximation to the subsonic Euler differential operator with 
specification of u, v at x = 0 and of p at x = 1, w = 1, 
Ax = Ay. The dotted lines indicate the path of convergence as 
the step size decreases. (The upper half of the spectrum is 
displayed completely only for Ax = 0.2.) 

solved numerically. The two methods used were upwind differencing (UPW) in 
space, as described above, combined with the forward Euler difference method in 
time, and the Lax-Wendroff method (LW). For scalar equations, the latter method is 
identical to the method described in Section 3 with c = At and with the forward 
Euler method in time. The Fourier expansions used in the analysis above are based 
on the assumption that p and u are symmetric across the boundaries y = 0, 1. For 
the limited computational domain, this corresponds to the conditions ap/ay = 

a u/ay = 0 at the boundaries. At the symmetry axis y = 0 this is true, but at the 
solid wall y = 1 it is, in general, not. For both difference methods we have therefore 
used boundary conditions that can be applied for general solutions. Since the 
coefficient matrices B +? B _ have only zeros in the second row, the general 
approximation used at inner points for the second equation can be used also at the 
boundaries. By adding the first and third equation we get the missing condition at 
y = 1. The total set of boundary conditions is composed by (5.3a), (5.3b) and the 
following conditions. 

Lower boundary 

PJ = PJ1 
(5.3c) u1J-1 = UJ 

vJ-1 = V]1- 
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Upper boundary 

aPjM + 2j(1 + c)JD( PM ? u IM) ? - C)D+X(PjM - ujM) 

(5.3d) + cD- Y (PjM vim) = 

at UjM + 2 ( + c)Dx(Pjm + Ujm) + 
I 

(c - 1)D+X(pjM- UjM) = 0, at 1 2 - M M 2 

VjM =-0. 

At the upper corners we use the special formulas (in order to avoid ambiguity and 
undefined variables): 

Upper left corner 

a (PoM- uoM) +(I - c)D+X(poM - UOM) + cD-Y(POM + VOM) =0 

(5.3e) iUOM + POM =gM 
II 

OM = gm; 

Upper right corner 

{a 
a(PNM + UNM) + (1 + c)DX( PNM + UNM) + cDy( PNM + VNM) =0 

(5.3f) I 
PNM UNM= gm 

VNM 0. 

All time-derivatives occurring in the boundary conditions are discretized by the 
forward Euler method. The boundary data are defined by 

gI(y)= 1 - y2 

(5.4) gII(y) 0, 

9II( y ) 0, 

and the initial data by 

(p(x,y,0)= 1, 

(5.5) (U(X ,O,)= 1 _Y2 , 

V(XyO0)= 0. 

In order to simulate a real life problem, we have chosen the boundary data such that 
the steady state solution is not smooth. Putting all time derivatives equal to zero in 
the original system, we get from the third equation that ap/ay = 0 at y = 1 for all 
x, 0 < x < 1. The second equation shows, after differentiating with respect to y, 
that au/ay is constant along the upper boundary. Since a(p + u)/ay = -2 
at x = O y = 1 we get au/ay = -2 also at x = 1, y = 1. This implies that 
a(p - u)/ay = 2 in the upper right corner, which does not match the data 
ag"I'/ay = 0, and obviously there is a discontinuity in the first derivative of the 
solution. 
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The convergence rate to steady state is shown in Figures 5.4-5.6 for different grid 
sizes. In all cases the two methods were run 500 time steps with At = 0.18Ax, which 
is close to the stability limit. This means that the final approximation w500 corre- 
sponds to a smaller real time t for a finer grid. The figures show the difference 
between un and u500 measured in the maximum norm, for Ax = Ay = 0.2, 0.1, 0.05, 
respectively. The faster convergence for the upwind differencing method is quite 
obvious. 

The upwind differencing method used here is only first-order accurate. By 
substituting the operator D? by D+- Ax(D ?)2/2 everywhere, we obtain second- 
order accuracy in space. Another way of increasing the accuracy is to use Richard- 
son extrapolation, which is also easy to apply for general conservation law problems. 

Let N = 1/Ax and M = I/Ay be even numbers and denote by w(h)(t) the 
approximation on the NM-grid. If w(2h)(t) is the approximation for the (N/2) x 
(M/2)-grid, then the extrapolated second-order accurate approximation is 

(5.6) wi-t 2w(h)k) -W(kh)(t), j = 0,1.., N12, k = 0,1.., M/2. 
Vjt = 21j,2k(t) w(h WjN/ Unk/ 

LOG(Ilun-u 500 II) 
500 

-n 

-5 

LW 

UPW 

FIGURE 5.4 

Convergence rate to steady state. The error as a function of the 
number of time steps (n). Ax = Ay = 0.2. LW-Lax-Wendroff 
scheme, UPW-upwind scheme. 
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LOG(IIun-u 5001j) 
500 

X~~~~~~~ X 

LW 

-5 

UPW 

FIGURE 5.5 

Convergence rate to steady state as in Figure 5.4 but with 
Ax = Ay = 0.1. 

We denote this approximation method by UPWR. To obtain the extrapolated steady 
state solution, the UPW-method was first run 500 steps on the (N/2) X (M/2)-grid, 
which for our problem gave a converged solution w(2h)(oo). The function values were 
interpolated in space to provide the starting solution on the finer grid, and then 
another 500 steps were run, giving a converged solution w(h)(oo). Finally, the 
extrapolation (5.6) was performed using these two solutions. 

The error was computed for the three methods, using a converged approximation 
on a 40 x 40-grid as the exact solution. Because of the singularities in the corners, 
the error was measured in the max-norm over the inner square 0.2 < x, y < 0.8 
only. The result is shown in Table 5.1. 

TABLE 5.1 

The error after 500 steps 

N=M UPW LW UPWR 

5 3.9 10-2 2.4 10-2 
10 2.0 10-2 4.9 i0- 4.4 10-3 

20 1.0 10-2 2.8 10 1.2 10-3 
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LOG(Ilu n -u 500 1) 
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n 

LW 

UPW 

-5 

FIGURE 5.6 
Convergence rate to steady state as in Figure 5.4 but with 
Ax = Ay = 0.05. 

The Lax-Wendroff method exhibits a poor performance on the finest grid, and 
this is due to the slow convergence in time (see Figure 5.6). We can also see that the 
iterations could have been stopped much earlier for the UPW-scheme. For example, 
if we are interested in a precision of the order 3 10-3 only (which is obtained with 
the LW-scheme), then the UPW-scheme or the finest grid could have been stopped 
after 200 steps. Since the number of operations per step is smaller for upwind-dif- 
ferencing, the gain in efficiency is larger than 2.5. 
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